EEEE CHAPTER 7

CHANNEL CAPACITY

What do we mean when we say that A communicates with B? We mean
that the physical acts of A have induced a desired physical state in B. This
transfer of information is a physical process and therefore is subject to the
uncontrollable ambient noise and imperfections of the physical signaling
process itself. The communication is successful if the receiver B and the
transmitter A agree on what was sent.

In this chapter we find the maximum number of distinguishable signals
for n uses of a communication channel. This number grows exponen-
tially with n, and the exponent is known as the channel capacity. The
characterization of the channel capacity (the logarithm of the number of
distinguishable signals) as the maximum mutual information is the central
and most famous success of information theory.

The mathematical analog of a physical signaling system is shown
in Figure 7.1. Source symbols from some finite alphabet are mapped
into some sequence of channel symbols, which then produces the out-
put sequence of the channel. The output sequence is random but has a
distribution that depends on the input sequence. From the output sequence,
we attempt to recover the transmitted message.

Each of the possible input sequences induces a probability distribution
on the output sequences. Since two different input sequences may give rise
to the same output sequence, the inputs are confusable. In the next few
sections, we show that we can choose a “nonconfusable” subset of input
sequences so that with high probability there is only one highly likely input
that could have caused the particular output. We can then reconstruct the
input sequences at the output with a negligible probability of error. By
mapping the source into the appropriate “widely spaced” input sequences
to the channel, we can transmit a message with very low probability of
error and reconstruct the source message at the output. The maximum rate
at which this can be done is called the capacity of the channel.

Definition We define a discrete channel to be a system consisting of an
input alphabet X and output alphabet ) and a probability transition matrix
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FIGURE 7.1. Communication system.

p(y|x) that expresses the probability of observing the output symbol y
given that we send the symbol x. The channel is said to be memoryless
if the probability distribution of the output depends only on the input at
that time and is conditionally independent of previous channel inputs or
outputs.

Definition We define the “information” channel capacity of a discrete
memoryless channel as

C =max[(X;Y), (7.1)
p(x)

where the maximum is taken over all possible input distributions p(x).

We shall soon give an operational definition of channel capacity as the
highest rate in bits per channel use at which information can be sent with
arbitrarily low probability of error. Shannon’s second theorem establishes
that the information channel capacity is equal to the operational channel
capacity. Thus, we drop the word information in most discussions of
channel capacity.

There is a duality between the problems of data compression and data
transmission. During compression, we remove all the redundancy in the
data to form the most compressed version possible, whereas during data
transmission, we add redundancy in a controlled fashion to combat errors
in the channel. In Section 7.13 we show that a general communication
system can be broken into two parts and that the problems of data com-
pression and data transmission can be considered separately.

7.1 EXAMPLES OF CHANNEL CAPACITY

7.1.1 Noiseless Binary Channel

Suppose that we have a channel whose the binary input is reproduced
exactly at the output (Figure 7.2).

In this case, any transmitted bit is received without error. Hence, one
error-free bit can be transmitted per use of the channel, and the capacity is
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1 > 1

FIGURE 7.2. Noiseless binary channel. C = 1 bit.

1 bit. We can also calculate the information capacity C = max [ (X;Y) =
1 bit, which is achieved by using p(x) = (3. 1).

7.1.2 Noisy Channel with Nonoverlapping Outputs

This channel has two possible outputs corresponding to each of the two
inputs (Figure 7.3). The channel appears to be noisy, but really is not.
Even though the output of the channel is a random consequence of the
input, the input can be determined from the output, and hence every trans-
mitted bit can be recovered without error. The capacity of this channel is
also 1 bit per transmission. We can also calculate the information capacity
C =maxI(X;Y) = 1 bit, which is achieved by using p(x) = (3, $).
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FIGURE 7.3. Noisy channel with nonoverlapping outputs. C = 1 bit.
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7.1.3 Noisy Typewriter

In this case the channel input is either received unchanged at the

output with probability % or is transformed into the next letter with

probability % (Figure 7.4). If the input has 26 symbols and we

use every alternate input symbol, we can transmit one of 13 sym-
bols without error with each transmission. Hence, the capacity of
this channel is log13 bits per transmission. We can also calculate
the information capacity C = max /(X;Y) = max (H(Y) — H(Y|X)) =
max H(Y) — 1 =1log26 — 1 = log 13, achieved by using p(x) distributed
uniformly over all the inputs.
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FIGURE 7.4. Noisy Typewriter. C = log 13 bits.
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7.1.4 Binary Symmetric Channel

Consider the binary symmetric channel (BSC), which is shown in Fig. 7.5.
This is a binary channel in which the input symbols are complemented
with probability p. This is the simplest model of a channel with errors,
yet it captures most of the complexity of the general problem.

When an error occurs, a 0 is received as a 1, and vice versa. The bits
received do not reveal where the errors have occurred. In a sense, all
the bits received are unreliable. Later we show that we can still use such
a communication channel to send information at a nonzero rate with an
arbitrarily small probability of error.

We bound the mutual information by

I(X;Y)=H{)—-H{Y|X) (7.2)
=H(Y) =) p)H(Y|X =2x) (73)
=H®Y)= ) px)H(p) (74)
=H(Y) ~ H(p) (7.5)
<1-H(p). (7.6)

where the last inequality follows because Y is a binary random variable.
Equality is achieved when the input distribution is uniform. Hence, the
information capacity of a binary symmetric channel with parameter p is

C=1—H(p)  bits. (7.7)
1-p
0 0
p
p
1 1
1-p

FIGURE 7.5. Binary symmetric channel. C = | — H(p) bits.
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7.1.5 Binary Erasure Channel

The analog of the binary symmetric channel in which some bits are lost
(rather than corrupted) is the binary erasure channel. In this channel, a
fraction « of the bits are erased. The receiver knows which bits have
been erased. The binary erasure channel has two inputs and three outputs
(Figure 7.6).

We calculate the capacity of the binary erasure channel as follows:

C :m(aigl(X; Y) (7.8)
plx

=m(a§<(H(Y) — H(Y[X)) (7.9)
plx

=m(a§< H(Y)— H(a). (7.10)
p(x

The first guess for the maximum of H (Y) would be log 3, but we cannot
achieve this by any choice of input distribution p(x). Letting £ be the
event {Y = e}, using the expansion

H(Y)=H(Y,E)=H(E)+ H(Y|E), (7.11)
and letting Pr(X = 1) = 7, we have

HY)=H((1-7)1—-a),a.7(1 —a)) = H@) + (1 —a)H ().
(7.12)

1-o

FIGURE 7.6. Binary erasure channel.
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Hence
C =max H(Y) = H(@) (7.13)
= max(1 — ) H(x) + H(e) = H(@) (7.14)
= max(1 — &) H(7) (7.15)
=1-a, (7.16)

where capacity is achieved by 7 = %

The expression for the capacity has some intuitive meaning: Since a
proportion « of the bits are lost in the channel, we can recover (at most)
a proportion 1 — ¢ of the bits. Hence the capacity is at most 1 — . It is
not immediately obvious that it is possible to achieve this rate. This will
follow from Shannon’s second theorem.

In many practical channels, the sender receives some feedback from
the receiver. If feedback is available for the binary erasure channel, it is
very clear what to do: If a bit is lost, retransmit it until it gets through.
Since the bits get through with probability 1 — «, the effective rate of
transmission is 1 — «. In this way we are easily able to achieve a capacity
of 1 — « with feedback.

Later in the chapter we prove that the rate 1 — « is the best that can be
achieved both with and without feedback. This is one of the consequences
of the surprising fact that feedback does not increase the capacity of

discrete memoryless channels.

7.2  SYMMETRIC CHANNELS

The capacity of the binary symmetric channel is C = 1 — H(p) bits per
transmission, and the capacity of the binary erasure channel is C =1 —
« bits per transmission. Now consider the channel with transition matrix:

03 02 05
piylx)=1 05 03 02 |. (7.17)
02 05 03

Here the entry in the xth row and the yth column denotes the conditional
probability p(y|x) that y is received when x is sent. In this channel, all
the rows of the probability transition matrix are permutations of each other
and so are the columns. Such a channel is said to be symmetric. Another
example of a symmetric channel is one of the form

Y=X+Z (mod o), (7.18)
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where Z has some distribution on the integers {0, 1,2,...,c — 1}, X has
the same alphabet as Z, and Z is independent of X.

In both these cases, we can easily find an explicit expression for the
capacity of the channel. Letting r be a row of the transition matrix, we
have

I(X;Y)=H(®Y) — H(Y|X) (7.19)
— H(Y) — H(r) (7.20)
<log|Y| — H(r) (7.21)

with equality if the output distribution is uniform. But p(x) = 1/|4X]
achieves a uniform distribution on Y, as seen from

1 1 1
= = — () = C— = —, 7_22
p(y) XEGXp(yIX)p(X) ] E p(ylx) CIXI M (7.22)

where c is the sum of the entries in one column of the probability transition
matrix.
Thus, the channel in (7.17) has the capacity

€ =max[(X; ¥) =log3 — H(0.5,03,0.), (7.23)
px)

and C is achieved by a uniform distribution on the input.

The transition matrix of the symmetric channel defined above is doubly
stochastic. In the computation of the capacity, we used the facts that the
rows were permutations of one another and that all the column sums were
equal.

Considering these properties, we can define a generalization of the
concept of a symmetric channel as follows:

Definition A channel is said to be symmetric if the rows of the channel
transition matrix p(y|x) are permutations of each other and the columns
are permutations of each other. A channel is said to be weakly symmetric
if every row of the transition matrix p(-|x) is a permutation of every other
row and all the column sums ) p(y|x) are equal.

For example, the channel with transition matrix

p(ylx) = ( ) (7.24)

is weakly symmetric but not symmetric.

W= W —
= \—
A= NI—
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The above derivation for symmetric channels carries over to weakly
symmetric channels as well. We have the following theorem for weakly
symmetric channels:
Theorem 7.2.1  For a weakly symmetric channel,

C = log|)Y| — H (row of transition matrix), (7.25)

and this is achieved by a uniform distribution on the input alphabet.

7.3 PROPERTIES OF CHANNEL CAPACITY

1. C =0since I(X;Y) = 0.

2. C <log|&] since C =max I (X;Y) <max H(X) = log|&].

3. C <log|)) for the same reason.

4. I(X;Y) is a continuous function of p(x).

5. I(X:;Y) is a concave function of p(x) (Theorem 2.7.4). Since

I(X;Y) is a concave function over a closed convex set, a local
maximum is a global maximum. From properties 2 and 3, the maxi-
mum is finite, and we are justified in using the term maximum rather
than supremum in the definition of capacity. The maximum can then
be found by standard nonlinear optimization techniques such as gra-
dient search. Some of the methods that can be used include the
following:

 Constrained maximization using calculus and the Kuhn—Tucker
conditions.

e The Frank—Wolfe gradient search algorithm.

e An iterative algorithm developed by Arimoto [25] and Blahut
[65]. We describe the algorithm in Section 10.8.

In general, there is no closed-form solution for the capacity. But for
many simple channels it is possible to calculate the capacity using prop-
erties such as symmetry. Some of the examples considered earlier are of
this form.

7.4 PREVIEW OF THE CHANNEL CODING THEOREM

So far, we have defined the information capacity of a discrete memoryless
channel. In the next section we prove Shannon’s second theorem, which



192 CHANNEL CAPACITY
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Xn

FIGURE 7.7. Channels after n uses.

gives an operational meaning to the definition of capacity as the number
of bits we can transmit reliably over the channel. But first we will try to
give an intuitive idea as to why we can transmit C bits of information over
a channel. The basic idea is that for large block lengths, every channel
looks like the noisy typewriter channel (Figure 7.4) and the channel has a
subset of inputs that produce essentially disjoint sequences at the output.

For each (typical) input n-sequence, there are approximately 271X
possible Y sequences, all of them equally likely (Figure 7.7). We wish
to ensure that no two X sequences produce the same Y output sequence.
Otherwise, we will not be able to decide which X sequence was sent.

The total number of possible (typical) Y sequences is & 27 () This set
has to be divided into sets of size 27 (Y1X) corresponding to the different
input X sequences. The total number of disjoint sets is less than or equal
to 2MHEX)-HIIX)) — onl(X:Y) Hepce, we can send at most ~ 2 (X:Y)
distinguishable sequences of length n.

Although the above derivation outlines an upper bound on the capacity,
a stronger version of the above argument will be used in the next section
to prove that this rate I is achievable with an arbitrarily low probability
of error.

Before we proceed to the proof of Shannon’s second theorem, we need
a few definitions.

7.5 DEFINITIONS

We analyze a communication system as shown in Figure 7.8.
A message W, drawn from the index set {1, 2, ..., M}, results in the

signal X"(W), which is received by the receiver as a random sequence
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FIGURE 7.8. Communication channel.

Y" ~ p(v"|x"). The receiver then guesses the index W by an appropriate
decoding rule W= g(Y'™). The receiver makes an error if W is not the
same as the index W that was transmitted. We now define these ideas
formally.

Definition A discrete channel, denoted by (X, p(y|x),)), consists of
two finite sets X' and ) and a collection of probability mass functions
p(y|x), one for each x € X, such that for every x and y, p(y|x) > 0, and
for every x, Zy p(y|x) = 1, with the interpretation that X is the input
and Y is the output of the channel.

Definition The nth extension of the discrete memoryless channel (DMC)
is the channel (X", p(y"|x™), V"), where

PO, Y = prlxd),  k=12,...,n. (7.26)
Remark If the channel is used without feedback [i.e., if the input sym-
bols do not depend on the past output symbols, namely, p(xi|x*~", y*=1)

= p(xy |xk_1 )], the channel transition function for the nth extension of the
discrete memoryless channel reduces to

PO =TT pilx). (7.27)

i=1

When we refer to the discrete memoryless channel, we mean the discrete
memoryless channel without feedback unless we state explicitly other-
wise.

Definition An (M, n) code for the channel (X, p(y|x),)) consists of
the following:

1. An index set {1,2,..., M}.

2. Anencoding function X" : {1,2, ..., M} — A", yielding codewords
x"(1), x"(2), ..., x"(M). The set of codewords is called the code-
book.
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3. A decoding function
g:V'—{1,2,..., M}, (7.28)

which is a deterministic rule that assigns a guess to each possible
received vector.

Definition (Conditional probability of error) Let

M =Pr(g(Y") # X" =x"(0) =) p(y" " NI (L") #i) (7.29)

yfl

be the conditional probability of error given that index i was sent, where
I (+) is the indicator function.

Definition The maximal probability of error A"V for an (M, n) code is
defined as

AW = max . (7.30)
ie{l,2,....M}

Definition The (arithmetic) average probability of error P." for an
(M, n) code is defined as

1 M
(n) _ .
PV =— E_l Aj. (7.31)

Note that if the index W is chosen according to a uniform distribution
over the set {1,2,..., M}, and X" = x"* (W), then

P S Pr(W # g(Y"), (7.32)

(i.e., Pg(”) is the probability of error). Also, obviously,
P <™, (7.33)
One would expect the maximal probability of error to behave quite differ-
ently from the average probability. But in the next section we prove that

a small average probability of error implies a small maximal probability
of error at essentially the same rate.
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It is worth noting that Pe(n) defined in (7.32) is only a mathematical
construct of the conditional probabilities of error A; and is itself a proba-
bility of error only if the message is chosen uniformly over the message
set {1,2,..., 2M}. However, both in the proof of achievability and the
converse, we choose a uniform distribution on W to bound the probability
of error. This allows us to establish the behavior of Pe(") and the maximal
probability of error A" and thus characterize the behavior of the channel
regardless of how it is used (i.e., no matter what the distribution of W).

Definition The rate R of an (M, n) code is

log M
R=¢
n

bits per transmission. (7.34)

Definition A rate R is said to be achievable if there exists a sequence
of ((Z”R —‘ ,n) codes such that the maximal probability of error A" tends
to 0 as n — oo.

Later, we write (2", n) codes to mean ([2"%],n) codes. This will
simplify the notation.

Definition The capacity of a channel is the supremum of all achievable
rates.

Thus, rates less than capacity yield arbitrarily small probability of error
for sufficiently large block lengths.

7.6 JOINTLY TYPICAL SEQUENCES

Roughly speaking, we decode a channel output Y” as the ith index if
the codeword X" (i) is “jointly typical” with the received signal Y". We
now define the important idea of joint typicality and find the probabil-
ity of joint typicality when X" (i) is the true cause of Y" and when it
is not.

Definition The set A" of jointly typical sequences {(x",y")} with

respect to the distribution p(x, y) is the set of n-sequences with empirical
entropies e-close to the true entropies:

Agn) — {(xn’ yn) c A" % yn .

_%log p(xn) — H(X) < €, (735)
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1

‘—— log p(y") — H(Y)| < e, (7.36)
n
1

‘——logp(x”,y”)—H(X, )| < e} , (7.37)
n

where
n

p" 3" =T pxi, yo). (7.38)

i=1

Theorem 7.6.1 (Joint AEP) Let (X", Y") be sequences of length n
drawn i.i.d. according to p(x", y") = []/_, p(xi, yi). Then:

1. Pr((X", Y") e Ag”)) — lasn — oo
2. |Aéll)| < 211(H(X,Y)+e)‘

3. If(f(”, f’”) ~ pxMpO") [ie., X" and Y" are independent with the
same marginals as p(x", y")], then

Pr ((X” ?IZ) c A(Il)) < 2—n(1(X;Y)—3€) (7 39)
. e ) = . .
Also, for sufficiently large n,

Pr ((5(", ") e AQ“) > (1 — e)2~"IOGY+30) (7.40)

Proof

1. We begin by showing that with high probability, the sequence is in
the typical set. By the weak law of large numbers,

1
——log p(X") - —E[log p(X)] = H(X) in probability.
n

(7.41)
Hence, given € > 0, there exists n1, such that for all n > n,

pr we) -

Similarly, by the weak law,
1
——logp(Y") — —E[log p(Y)] = H(Y) in probability (7.43)
n

—% log p(X") — H(X) (7.42)

WM™
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and

1
——log p(X",Y") > —E[log p(X,Y)] = H(X,Y) in probability,
n

(7.44)
and there exist ny, and n3, such that for all n > no,
1 " €
Pr{|—=logp(Y")—H(Y)|l>€) < 3 (7.45)
n
and for all n > nj,
1 €
Pr(——logp(X”,Y”)—H(X, Y) 26) < 3 (7.46)
n

Choosing n > max{n, n», n3}, the probability of the union of the
sets in (7.42), (7.45), and (7.46) must be less than €. Hence for n
sufficiently large, the probability of the set Ag”) is greater than 1 — €,
establishing the first part of the theorem.

. To prove the second part of the theorem, we have

=Y o) 747
> Z p(x",y") (7.48)
Agn)
> |Aé/z)|2—n(H(X7Y)+€)’ (7.49)
and hence

. Now if X" and Y” are independent but have the same marginals as
X" and Y", then

Pr(X". ¥ e Ay = > pG")pOy") (7.51)
(. ymead”

< QMHX,V)+e)y—n(H(X)—=€)y—n(H(Y)—e) (7.52)

— oI (X;¥)=3¢) (7.53)
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For sufficiently large n, Pr(A™) > 1 — ¢, and therefore

l—e< Y pG".y" (7.54)
(x”,y")EAgl)
< |A§n)|2—n(H(X,Y)—e) (7.55)
and
AL 2z (1= 2" D=, (7.56)

By similar arguments to the upper bound above, we can also show
that for n sufficiently large,

Pr(X". ¥ € AM) =) p(™) p(y™) (7.57)
A
> (l _ 6)2VL(H(X,Y)—6)2—71(H(X)+€)2—H(H(Y)+€)
(7.58)
= (1 —e)27nUED+e (7.59)
The jointly typical set is illustrated in Figure 7.9. There are about
2"H(X) typical X sequences and about 27 () typical ¥ sequences. How-

ever, since there are only 2" (X-¥) jointly typical sequences, not all pairs
of typical X" and typical Y" are also jointly typical. The probability that

yn
x"

FIGURE 7.9. Jointly typical sequences.
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any randomly chosen pair is jointly typical is about 27"/ (X:¥) Hence,
we can consider about 2"/ :¥) such pairs before we are likely to come
across a jointly typical pair. This suggests that there are about 2"/ (X:V)
distinguishable signals X".

Another way to look at this is in terms of the set of jointly typical
sequences for a fixed output sequence Y”, presumably the output sequence
resulting from the true input signal X". For this sequence Y”, there are
about 2" (X1Y) conditionally typical input signals. The probability that
some randomly chosen (other) input signal X" is jointly typical with Y"
is about 2"HXIY) jpnHX) — 9—=nl(X:Y¥) Thig again suggests that we can
choose about 2/ X:¥) codewords X" (W) before one of these codewords
will get confused with the codeword that caused the output Y.

7.7 CHANNEL CODING THEOREM

We now prove what is perhaps the basic theorem of information theory,
the achievability of channel capacity, first stated and essentially proved
by Shannon in his original 1948 paper. The result is rather counterintu-
itive; if the channel introduces errors, how can one correct them all? Any
correction process is also subject to error, ad infinitum.

Shannon used a number of new ideas to prove that information can be
sent reliably over a channel at all rates up to the channel capacity. These
ideas include:

o Allowing an arbitrarily small but nonzero probability of error

o Using the channel many times in succession, so that the law of large
numbers comes into effect

o Calculating the average of the probability of error over a random
choice of codebooks, which symmetrizes the probability, and which
can then be used to show the existence of at least one good code

Shannon’s outline of the proof was based on the idea of typical sequen-
ces, but the proof was not made rigorous until much later. The proof given
below makes use of the properties of typical sequences and is probably
the simplest of the proofs developed so far. As in all the proofs, we
use the same essential ideas—random code selection, calculation of the
average probability of error for a random choice of codewords, and so
on. The main difference is in the decoding rule. In the proof, we decode
by joint typicality; we look for a codeword that is jointly typical with the
received sequence. If we find a unique codeword satisfying this property,
we declare that word to be the transmitted codeword. By the properties
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of joint typicality stated previously, with high probability the transmitted
codeword and the received sequence are jointly typical, since they are
probabilistically related. Also, the probability that any other codeword
looks jointly typical with the received sequence is 27"/. Hence, if we
have fewer then 2"/ codewords, then with high probability there will be
no other codewords that can be confused with the transmitted codeword,
and the probability of error is small.

Although jointly typical decoding is suboptimal, it is simple to analyze
and still achieves all rates below capacity.

We now give the complete statement and proof of Shannon’s second
theorem:

Theorem 7.7.1 (Channel coding theorem) For a discrete memory-
less channel, all rates below capacity C are achievable. Specifically, for
every rate R < C, there exists a sequence of (2'%, n) codes with maximum
probability of error A — 0.

Conversely, any sequence of (2'%, n) codes with A" — 0 must have
R <C.

Proof: We prove that rates R < C are achievable and postpone proof of
the converse to Section 7.9.

Achievability: Fix p(x). Generate a (2"%, n) code at random according
to the distribution p(x). Specifically, we generate 2"R codewords inde-
pendently according to the distribution

PG =[] p@. (7.60)
i=1

We exhibit the 2"® codewords as the rows of a matrix:

@ w@ e X
C= : : : : (7.61)

@2 0@ - 20

Each entry in this matrix is generated i.i.d. according to p(x). Thus, the
probability that we generate a particular code C is

MRy

PrC) =[] ] ot w). (7.62)

w=1i=1



7.7 CHANNEL CODING THEOREM 201

Consider the following sequence of events:

1

2.

7.

Ana

. A random code C is generated as described in (7.62) according to
p(x).

The code C is then revealed to both sender and receiver. Both sender
and receiver are also assumed to know the channel transition matrix
p(y|x) for the channel.

. A message W is chosen according to a uniform distribution
Pr(W = w) = 27"k, w=1,2,...,2"% (7.63)

The wth codeword X" (w), corresponding to the wth row of C, is
sent over the channel.

. The receiver receives a sequence Y according to the distribution

P(y"|x"(w)) = [ | p(ilxiw)). (7.64)

i=1

. The receiver guesses which message was sent. (The optimum proce-
dure to minimize probability of error is maximum likelihood decod-
ing (i.e., the receiver should choose the a posteriori most likely
message). But this procedure is difficult to analyze. Instead, we will
use jointly typical decoding, which is described below. Jointly typi-
cal decoding is easier to analyze and is asymptotically optimal.) In
jointly typical decoding, the receiver declares that the index W was
sent if the following conditions are satisfied:

o (X™(W), Y™) is jointly typical.
o There is no other index W’ # W such that (X"(W'),Y") €
A,

If no such W exists or if there is more than one such, an error is
declared. (We may assume that the receiver outputs a dummy index
such as 0 in this case.)

There is a decoding error if W # W. Let £ be the event {W % W},

lysis of the probability of error

Outline: We first outline the analysis. Instead of calculating the proba-
bility of error for a single code, we calculate the average over all codes
generated at random according to the distribution (7.62). By the symmetry
of the code construction, the average probability of error does not depend
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on the particular index that was sent. For a typical codeword, there are two
different sources of error when we use jointly typical decoding: Either the
output Y” is not jointly typical with the transmitted codeword or there is
some other codeword that is jointly typical with Y”. The probability that
the transmitted codeword and the received sequence are jointly typical
goes to 1, as shown by the joint AEP. For any rival codeword, the proba-
bility that it is jointly typical with the received sequence is approximately
27" and hence we can use about 2"/ codewords and still have a low
probability of error. We will later extend the argument to find a code with
a low maximal probability of error.

Detailed calculation of the probability of error: We let W be drawn
according to a uniform distribution over {1,2,...,2"%} and use jointly
typical decoding W(y”) as described in step 6. Let £ = (W (™) #*= W}
denote the error event. We will calculate the average probability of error,
averaged over all codewords in the codebook, and averaged over all code-
books; that is, we calculate

Pr(€) = Y Pr(C)P"(C) (7.65)
C
1 Z”R
- ; PO 5w 2::1 2w (0) (7.66)
p 2
= 5F Z Z Pr(C)i,y (C), (7.67)
w=1 C

where Pg(”) (C) is defined for jointly typical decoding. By the symmetry
of the code construction, the average probability of error averaged over
all codes does not depend on the particular index that was sent [i.e.,
Zc Pr(C)1,,(C) does not depend on w]. Thus, we can assume without
loss of generality that the message W = 1 was sent, since

R

1
Pr&) = 5 > ) Pr(0n(©) (7.68)
w=] C
= Z Pr(C)A1(C) (7.69)
C
= Pr(E|W = 1). (7.70)

Define the following events:

E; ={ (X"(@i),Y")isin AW}, ie{l,2,..., 2Ry, (7.71)
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where E; is the event that the ith codeword and Y" are jointly typical.
Recall that Y is the result of sending the first codeword X" (1) over the
channel.

Then an error occurs in the decoding scheme if either E{ occurs (when
the transmitted codeword and the received sequence are not jointly typical)
or Eo U E3U---U E,nr oceurs (when a wrong codeword is jointly typical
with the received sequence). Hence, letting P (€) denote Pr(E|W = 1), we
have

PrIW =1)=P(E{UE,UE;U---UEur|W =1) (7.72)

2nR
<PE[W=D+) PEIW=1, (173
i=2
by the union of events bound for probabilities. Now, by the joint AEP,
P(E{|W =1)— 0, and hence
P(E{IW =1) <€ for n sufficiently large. (7.74)

Since by the code generation process, X"”(1) and X" (i) are independent
for i # 1, so are Y" and X" (7). Hence, the probability that X" (i) and Y"
are jointly typical is < 27U (X:V)=39) by the joint AEP. Consequently,
2I1R
Pr(€) = Pr(£|W = 1) < P(E{|W = 1)+ > _ P(E}|W = 1) (7.75)
i=2

nR

<e+ 22:2_”(1(;(;1/)—35) (7.76)
i=2

et (2nR _ 1) y—n(I(X;Y)=3e€) (7.77)

<e+ 93ney—n(I(X;¥)=R) (7.78)

<2¢ (7.79)

if n is sufficiently large and R < I(X;Y) — 3e. Hence, if R < [(X;Y),
we can choose € and n so that the average probability of error, averaged
over codebooks and codewords, is less than 2e¢.

To finish the proof, we will strengthen this conclusion by a series of
code selections.

1. Choose p(x) in the proof to be p*(x), the distribution on X that
achieves capacity. Then the condition R < /(X; Y) can be replaced
by the achievability condition R < C.
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2. Get rid of the average over codebooks. Since the average proba-
bility of error over codebooks is small (< 2¢), there exists at least
one codebook C* with a small average probability of error. Thus,
Pr(&|C*) < 2¢. Determination of C* can be achieved by an exhaus-
tive search over all (2”%, n) codes. Note that

an

o1
Pr(EICT) = 2oz ) mi(C), (7.80)
i=1

since we have chosen W according to a uniform distribution as
specified in (7.63).

3. Throw away the worst half of the codewords in the best codebook
C*. Since the arithmetic average probability of error P (C*) for
this code is less then 2¢, we have

1 *
PrEIC) < 2z D hi(C) < 2e, (7.81)

which implies that at least half the indices i and their associated
codewords X" (i) must have conditional probability of error A; less
than 4e (otherwise, these codewords themselves would contribute
more than 2e to the sum). Hence the best half of the codewords
have a maximal probability of error less than 4€. If we reindex these
codewords, we have 2"8=! codewords. Throwing out half the code-
words has changed the rate from R to R — %, which is negligible
for large n.

Combining all these improvements, we have constructed a code of rate
R =R - %, with maximal probability of error A" < 4e. This proves the
achievability of any rate below capacity. O

Random coding is the method of proof for Theorem 7.7.1, not the
method of signaling. Codes are selected at random in the proof merely to
symmetrize the mathematics and to show the existence of a good deter-
ministic code. We proved that the average over all codes of block length
n has a small probability of error. We can find the best code within this
set by an exhaustive search. Incidentally, this shows that the Kolmogorov
complexity (Chapter 14) of the best code is a small constant. This means
that the revelation (in step 2) to the sender and receiver of the best code
C* requires no channel. The sender and receiver merely agree to use the
best (2%, n) code for the channel.

Although the theorem shows that there exist good codes with arbitrar-
ily small probability of error for long block lengths, it does not provide
a way of constructing the best codes. If we used the scheme suggested
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by the proof and generate a code at random with the appropriate distri-
bution, the code constructed is likely to be good for long block lengths.
However, without some structure in the code, it is very difficult to decode
(the simple scheme of table lookup requires an exponentially large table).
Hence the theorem does not provide a practical coding scheme. Ever
since Shannon’s original paper on information theory, researchers have
tried to develop structured codes that are easy to encode and decode.
In Section 7.11, we discuss Hamming codes, the simplest of a class of
algebraic error correcting codes that can correct one error in a block of
bits. Since Shannon’s paper, a variety of techniques have been used to
construct error correcting codes, and with turbo codes have come close
to achieving capacity for Gaussian channels.

7.8 ZERO-ERROR CODES

The outline of the proof of the converse is most clearly motivated by
going through the argument when absolutely no errors are allowed. We
will now prove that P’ = 0 implies that R < C. Assume that we have a
(2R 1) code with zero probability of error [i.e., the decoder output g(¥")
is equal to the input index W with probability 1]. Then the input index W
is determined by the output sequence [i.e., H(W|Y") = 0]. Now, to obtain
a strong bound, we arbitrarily assume that W is uniformly distributed
over {1,2,...,2"®}. Thus, H(W) = nR. We can now write the string of
inequalities:

nR=H(W) = HW[Y")+I1(W: Y™ (7.82)
— e
=0

— [(W:Y") (7.83)

@

< I(X";Y" (7.84)

b n

EDYFeass (785)
i=1

©

< nC, (7.86)

where (a) follows from the data-processing inequality (since W — X" (W)
— Y" forms a Markov chain), (b) will be proved in Lemma 7.9.2 using
the discrete memoryless assumption, and (c) follows from the definition
of (information) capacity. Hence, for any zero-error (2" n) code, for
all n,

R<C. (7.87)
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7.9 FANO’S INEQUALITY AND THE CONVERSE
TO THE CODING THEOREM

We now extend the proof that was derived for zero-error codes to the case
of codes with very small probabilities of error. The new ingredient will be
Fano’s inequality, which gives a lower bound on the probability of error
in terms of the conditional entropy. Recall the proof of Fano’s inequality,
which is repeated here in a new context for reference.

Let us define the setup under consideration. The index W is uniformly
distributed on the set W= {1, 2, ..., 2"k}, and the sequence Y is related
probabilistically to W. From Y", we estimate the index W that was sent.
Let the estimate be W = g(¥”"). Thus, W — X" (W) — Y" — W forms
a Markov chain. Note that the probability of error is

Pr(W # W)= 2% D ai=r". (7.88)

We begin with the following lemma, which has been proved in
Section 2.10:

Lemma 7.9.1 (Fano’s inequality) For a discrete memoryless channel
with a codebook C and the input message W uniformly distributed over
2"R e have

H(W|W) <1+ P"nR. (7.89)
Proof: Since W is uniformly distributed, we have P\" = Pr(W #£ W).

We apply Fano’s inequality (Theorem 2.10.1) for W in an alphabet of
size 2"k, O

We will now prove a lemma which shows that the capacity per trans-
mission is not increased if we use a discrete memoryless channel many
times.

Lemma7.9.2 Let Y" be the result of passing X" through a discrete
memoryless channel of capacity C. Then

[(X";Y")y<nC  forall p(x"). (7.90)
Proof

L(X"Y") = H(Y") — H(Y"|X") (7.90)

=HY") =) HEIV.....Yi X (192)
i=1

= HY") — Z H(Y:|X)), (7.93)
i=1
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since by the definition of a discrete memoryless channel, ¥; depends only
on X; and is conditionally independent of everything else. Continuing the
series of inequalities, we have

I(X" YD =HQY") = ) H(Y:X)) (7.94)
i=1
<) H®¥)-) HiX) (7.95)
i=l i=1
=) (XY (7.96)
i=1
<nC, (7.97)

where (7.95) follows from the fact that the entropy of a collection of ran-
dom variables is less than the sum of their individual entropies, and (7.97)
follows from the definition of capacity. Thus, we have proved that using the
channel many times does not increase the information capacity in bits per
transmission. U

We are now in a position to prove the converse to the channel coding
theorem.

Proof: Converse to Theorem 7.7.1 (Channel coding theorem). We have
to show that any sequence of (2"%, n) codes with ¥ — 0 must have R <
C. If the maximal probability of error tends to zero, the average probability
of error for the sequence of codes also goes to zero [i.e., A? — 0 implies
P — 0, where P\ is defined in (7.32)]. For a fixed encoding rule
X"(-) and a fixed decoding rule W= g(Y™), we have W — X" (W) —
Y" — W. For each n, let W be drawn according to a uniform distribution
over {1,2,..., 2”R}. Since W has a uniform distribution, Pr(W W)=
pm = 1 > A;. Hence,

= 5
nR @ HW) (7.98)

O g ow iy + 1w W) (7.99)

(2 1+ P™nR + [(W; W) (7.100)

Q 1+ P"nR+1(X";Y") (7.101)

©
<1+ P™nR +nC, (7.102)
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where (a) follows from the assumption that W is uniform over {1, 2, ...,
2R} (b) is an identity, (c) is Fano’s inequality for W taking on at most 2%
values, (d) is the data-processing inequality, and (e) is from Lemma 7.9.2.
Dividing by n, we obtain

(n) 1
R<P"R+-+C. (7.103)
n

Now letting n — oo, we see that the first two terms on the right-hand
side tend to 0, and hence

R =<C. (7.104)
We can rewrite (7.103) as
C 1
PM>1—-=——-—, 7.105
e - R nR ( )

This equation shows that if R > C, the probability of error is bounded
away from O for sufficiently large n (and hence for all n, since if Pe(”) =0
for small n, we can construct codes for large n with Pe(”) = 0 by con-
catenating these codes). Hence, we cannot achieve an arbitrarily low
probability of error at rates above capacity. O

This converse is sometimes called the weak converse to the channel
coding theorem. It is also possible to prove a strong converse, which states
that for rates above capacity, the probability of error goes exponentially
to 1. Hence, the capacity is a very clear dividing point—at rates below
capacity, P — 0 exponentially, and at rates above capacity, P\’ — 1
exponentially.

7.10 EQUALITY IN THE CONVERSE TO THE CHANNEL
CODING THEOREM

We have proved the channel coding theorem and its converse. In essence,
these theorems state that when R < C, it is possible to send informa-
tion with an arbitrarily low probability of error, and when R > C, the
probability of error is bounded away from zero.

It is interesting and rewarding to examine the consequences of equality
in the converse; hopefully, it will give some ideas as to the kinds of codes
that achieve capacity. Repeating the steps of the converse in the case when
P, =0, we have

nR = HW) (7.106)
= HW|W)+I(W; W) (7.107)
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= [(W; W)) (7.108)

(? I(X"(W): Y™ (7.109)

= HY" — H{Y"X" (7.110)

= HY") =) Hi|X) (7.111)

i=1

(b) n n

<Y H¥) - HilX) (7.112)
i=1 i=1

- ZI(X,»; Y)) (7.113)
i=1

©

< nC. (7.114)

We have equality in (a), the data-processing inequality, only if I(Y";
X"(W)|W) =0 and I (X"; Y"|W) = 0, which is true if all the codewords
are distinct and if W is a sufficient statistic for decoding. We have equality
in (b) only if the Y;’s are independent, and equality in (c) only if the
distribution of X; is p*(x), the distribution on X that achieves capacity.
We have equality in the converse only if these conditions are satisfied. This
indicates that a capacity-achieving zero-error code has distinct codewords
and the distribution of the Y;’s must be 1.i.d. with

PO =) )y, (7.115)

the distribution on Y induced by the optimum distribution on X. The
distribution referred to in the converse is the empirical distribution on X
and Y induced by a uniform distribution over codewords, that is,

on R

1
plxi.yi) = =g D I(Xi(w) = x) p(ilx). (7.116)
w=l1

We can check this result in examples of codes that achieve capacity:

1. Noisy typewriter. In this case we have an input alphabet of 26 let-
ters, and each letter is either printed out correctly or changed to the
next letter with probability % A simple code that achieves capacity
(log 13) for this channel is to use every alternate input letter so that



210 CHANNEL CAPACITY

no two letters can be confused. In this case, there are 13 codewords
of block length 1. If we choose the codewords i.i.d. according to a
uniform distribution on {1, 3,5, 7, ..., 25}, the output of the channel
is also i.i.d. and uniformly distributed on {1, 2, ..., 26}, as expected.

2. Binary symmetric channel. Since given any input sequence, every
possible output sequence has some positive probability, it will not
be possible to distinguish even two codewords with zero probability
of error. Hence the zero-error capacity of the BSC is zero. How-
ever, even in this case, we can draw some useful conclusions. The
efficient codes will still induce a distribution on Y that looks i.i.d.
~ Bernoulli(%). Also, from the arguments that lead up to the con-
verse, we can see that at rates close to capacity, we have almost
entirely covered the set of possible output sequences with decoding
sets corresponding to the codewords. At rates above capacity, the
decoding sets begin to overlap, and the probability of error can no
longer be made arbitrarily small.

7.11 HAMMING CODES

The channel coding theorem promises the existence of block codes that
will allow us to transmit information at rates below capacity with an
arbitrarily small probability of error if the block length is large enough.
Ever since the appearance of Shannon’s original paper [471], people have
searched for such codes. In addition to achieving low probabilities of
error, useful codes should be “simple,” so that they can be encoded and
decoded efficiently.

The search for simple good codes has come a long way since the pub-
lication of Shannon’s original paper in 1948. The entire field of coding
theory has been developed during this search. We will not be able to
describe the many elegant and intricate coding schemes that have been
developed since 1948. We will only describe the simplest such scheme
developed by Hamming [266]. It illustrates some of the basic ideas under-
lying most codes.

The object of coding is to introduce redundancy so that even if some
of the information is lost or corrupted, it will still be possible to recover
the message at the receiver. The most obvious coding scheme is to repeat
information. For example, to send a 1, we send 11111, and to send a 0, we
send 00000. This scheme uses five symbols to send 1 bit, and therefore
has a rate of % bit per symbol. If this code is used on a binary symmetric
channel, the optimum decoding scheme is to take the majority vote of
each block of five received bits. If three or more bits are 1, we decode
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the block as a 1; otherwise, we decode it as 0. An error occurs if and
only if more than three of the bits are changed. By using longer repetition
codes, we can achieve an arbitrarily low probability of error. But the rate
of the code also goes to zero with block length, so even though the code
is “simple,” it is really not a very useful code.

Instead of simply repeating the bits, we can combine the bits in some
intelligent fashion so that each extra bit checks whether there is an error in
some subset of the information bits. A simple example of this is a parity
check code. Starting with a block of n — 1 information bits, we choose
the nth bit so that the parity of the entire block is O (the number of 1’s
in the block is even). Then if there is an odd number of errors during
the transmission, the receiver will notice that the parity has changed and
detect the error. This is the simplest example of an error-detecting code.
The code does not detect an even number of errors and does not give any
information about how to correct the errors that occur.

We can extend the idea of parity checks to allow for more than one
parity check bit and to allow the parity checks to depend on various subsets
of the information bits. The Hamming code that we describe below is an
example of a parity check code. We describe it using some simple ideas
from linear algebra.

To illustrate the principles of Hamming codes, we consider a binary
code of block length 7. All operations will be done modulo 2. Consider
the set of all nonzero binary vectors of length 3. Arrange them in columns
to form a matrix:

000T1T1TT1:1
H=|0110011 /. (7.117)
1 01 0101

Consider the set of vectors of length 7 in the null space of H (the vectors
which when multiplied by H give 000). From the theory of linear spaces,
since H has rank 3, we expect the null space of H to have dimension 4.
These 2* codewords are

0000000 0100101 1000011 1100110
0001111 0101010 1001100 1101001
0010110 0110011 1010101 1110000
0011001 0111100 1011010 1111111

Since the set of codewords is the null space of a matrix, it is linear in the
sense that the sum of any two codewords is also a codeword. The set of
codewords therefore forms a linear subspace of dimension 4 in the vector
space of dimension 7.
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Looking at the codewords, we notice that other than the all-O codeword,
the minimum number of 1’s in any codeword is 3. This is called the
minimum weight of the code. We can see that the minimum weight of
a code has to be at least 3 since all the columns of H are different, so
no two columns can add to 000. The fact that the minimum distance is
exactly 3 can be seen from the fact that the sum of any two columns must
be one of the columns of the matrix.

Since the code is linear, the difference between any two codewords is
also a codeword, and hence any two codewords differ in at least three
places. The minimum number of places in which two codewords differ is
called the minimum distance of the code. The minimum distance of the
code is a measure of how far apart the codewords are and will determine
how distinguishable the codewords will be at the output of the channel.
The minimum distance is equal to the minimum weight for a linear code.
We aim to develop codes that have a large minimum distance.

For the code described above, the minimum distance is 3. Hence if a
codeword c is corrupted in only one place, it will differ from any other
codeword in at least two places and therefore be closer to ¢ than to
any other codeword. But can we discover which is the closest codeword
without searching over all the codewords?

The answer is yes. We can use the structure of the matrix H for decod-
ing. The matrix H, called the parity check matrix, has the property that
for every codeword ¢, Hc = 0. Let e; be a vector with a 1 in the ith
position and 0’s elsewhere. If the codeword is corrupted at position i, the
received vector r = ¢ + e;. If we multiply this vector by the matrix H,
we obtain

Hr=H(c+e)=Hc+ He; = He;, (7.118)

which is the vector corresponding to the ith column of H. Hence looking
at Hr, we can find which position of the vector was corrupted. Revers-
ing this bit will give us a codeword. This yields a simple procedure for
correcting one error in the received sequence. We have constructed a code-
book with 16 codewords of block length 7, which can correct up to one
error. This code is called a Hamming code.

We have not yet identified a simple encoding procedure; we could use
any mapping from a set of 16 messages into the codewords. But if we
examine the first 4 bits of the codewords in the table, we observe that
they cycle through all 2* combinations of 4 bits. Thus, we could use
these 4 bits to be the 4 bits of the message we want to send; the other
3 bits are then determined by the code. In general, it is possible to modify
a linear code so that the mapping is explicit, so that the first k bits in each
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codeword represent the message, and the last n — k bits are parity check
bits. Such a code is called a systematic code. The code is often identified
by its block length n, the number of information bits k£ and the minimum
distance d. For example, the above code is called a (7,4,3) Hamming code
(e,n=7k=4,and d = 3).

An easy way to see how Hamming codes work is by means of a Venn
diagram. Consider the following Venn diagram with three circles and with
four intersection regions as shown in Figure 7.10. To send the information
sequence 1101, we place the 4 information bits in the four intersection
regions as shown in the figure. We then place a parity bit in each of the
three remaining regions so that the parity of each circle is even (i.e., there
are an even number of 1’s in each circle). Thus, the parity bits are as
shown in Figure 7.11.

Now assume that one of the bits is changed; for example one of the
information bits is changed from 1 to 0 as shown in Figure 7.12. Then
the parity constraints are violated for two of the circles (highlighted in the
figure), and it is not hard to see that given these violations, the only single
bit error that could have caused it is at the intersection of the two circles
(i.e., the bit that was changed). Similarly working through the other error
cases, it is not hard to see that this code can detect and correct any single
bit error in the received codeword.

We can easily generalize this procedure to construct larger matrices
H. In general, if we use / rows in H, the code that we obtain will have
block length n = 2l — 1, k=2 —1—1 and minimum distance 3. All
these codes are called Hamming codes and can correct one error.

Vb

FIGURE 7.10. Venn diagram with information bits.
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FIGURE 7.11. Venn diagram with information bits and parity bits with even parity for each
circle.

FIGURE 7.12. Venn diagram with one of the information bits changed.

Hamming codes are the simplest examples of linear parity check codes.
They demonstrate the principle that underlies the construction of other
linear codes. But with large block lengths it is likely that there will be
more than one error in the block. In the early 1950s, Reed and Solomon
found a class of multiple error-correcting codes for nonbinary channels.
In the late 1950s, Bose and Ray-Chaudhuri [72] and Hocquenghem [278]
generalized the ideas of Hamming codes using Galois field theory to con-
struct f-error correcting codes (called BCH codes) for any ¢. Since then,
various authors have developed other codes and also developed efficient
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decoding algorithms for these codes. With the advent of integrated circuits,
it has become feasible to implement fairly complex codes in hardware and
realize some of the error-correcting performance promised by Shannon’s
channel capacity theorem. For example, all compact disc players include
error-correction circuitry based on two interleaved (32, 28, 5) and (28, 24,
5) Reed—Solomon codes that allow the decoder to correct bursts of up to
4000 errors.

All the codes described above are block codes —they map a block of
information bits onto a channel codeword and there is no dependence on
past information bits. It is also possible to design codes where each output
block depends not only on the current input block, but also on some of
the past inputs as well. A highly structured form of such a code is called
a convolutional code. The theory of convolutional codes has developed
considerably over the last 40 years. We will not go into the details, but
refer the interested reader to textbooks on coding theory [69, 356].

For many years, none of the known coding algorithms came close
to achieving the promise of Shannon’s channel capacity theorem. For a
binary symmetric channel with crossover probability p, we would need a
code that could correct up to np errors in a block of length n and have
n(1 — H(p)) information bits. For example, the repetition code suggested
earlier corrects up to n/2 errors in a block of length n, but its rate goes
to 0 with n. Until 1972, all known codes that could correct no errors for
block length n had asymptotic rate 0. In 1972, Justesen [301] described
a class of codes with positive asymptotic rate and positive asymptotic
minimum distance as a fraction of the block length.

In 1993, a paper by Berrou et al. [57] introduced the notion that the
combination of two interleaved convolution codes with a parallel cooper-
ative decoder achieved much better performance than any of the earlier
codes. Each decoder feeds its “opinion” of the value of each bit to the
other decoder and uses the opinion of the other decoder to help it decide
the value of the bit. This iterative process is repeated until both decoders
agree on the value of the bit. The surprising fact is that this iterative
procedure allows for efficient decoding at rates close to capacity for a
variety of channels. There has also been a renewed interest in the theory
of low-density parity check (LDPC) codes that were introduced by Robert
Gallager in his thesis [231, 232]. In 1997, MacKay and Neal [368] showed
that an iterative message-passing algorithm similar to the algorithm used
for decoding turbo codes could achieve rates close to capacity with high
probability for LDPC codes. Both Turbo codes and LDPC codes remain
active areas of research and have been applied to wireless and satellite
communication channels.
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X(W,Yi-1 Y, A
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FIGURE 7.13. Discrete memoryless channel with feedback.

7.12 FEEDBACK CAPACITY

A channel with feedback is illustrated in Figure 7.13. We assume that
all the received symbols are sent back immediately and noiselessly to
the transmitter, which can then use them to decide which symbol to send
next. Can we do better with feedback? The surprising answer is no, which
we shall now prove. We define a (2"%, n) feedback code as a sequence
of mappings x; (W, Yi=!), where each x; is a function only of the mes-

sage W € 2"R and the previous received values, Y1, Y2,...,Y;_1, and a
sequence of decoding functions g : )* — {1,2,...,2"%}. Thus,

P =Pr{gy") # w}, (7.119)
when W is uniformly distributed over {1, 2, ..., onR 1.

Definition The capacity with feedback, Cgp, of a discrete memoryless
channel is the supremum of all rates achievable by feedback codes.

Theorem 7.12.1 (Feedback capacity)

Crp=C=maxI(X;7Y). (7.120)
px)

Proof: Since a nonfeedback code is a special case of a feedback code,
any rate that can be achieved without feedback can be achieved with
feedback, and hence

Crg > C. (7.121)

Proving the inequality the other way is slightly more tricky. We cannot
use the same proof that we used for the converse to the coding theorem
without feedback. Lemma 7.9.2 is no longer true, since X; depends on
the past received symbols, and it is no longer true that Y; depends only
on X; and is conditionally independent of the future X’s in (7.93).
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There is a simple change that will fix the problem with the proof.
Instead of using X", we will use the index W and prove a similar series
of inequalities. Let W be uniformly distributed over {1, 2, ..., 2R} Then
Pr(W # W) = P and

nR=HW)=HW|W)+ I(W; W) (7.122)
<14+ P"nR+I(W; W) (7.123)
<14+ P"nR+T(W;Y"), (7.124)

by Fano’s inequality and the data-processing inequality. Now we can
bound I (W; Y") as follows:

[(W;Y") = H(Y") — H(Y"|W) (7.125)

=HY") =) HYV, Yoo, Vit W) (7.126)
i=1
n

=HY") =Y HWIN. Voo Vi W X)) (7127)

i=1

= HY") — Z H(Y;|X;). (7.128)
i=l1

since X; is a function of Yy, ..., Y;_1 and W; and conditional on X;, ¥;
is independent of W and past samples of Y. Continuing, we have

n

I(W:Y")=H(Y") =Y H(Y|X)) (7.129)
i=1
<> H¥)—-) HilX) (7.130)
i=1 i=1
— ZI(X,-; Y)) (7.131)
i=1
<nC (7.132)

from the definition of capacity for a discrete memoryless channel. Putting
these together, we obtain

nR < P™nR+14nC, (7.133)
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and dividing by n and letting n — oo, we conclude that
R =<C. (7.134)

Thus, we cannot achieve any higher rates with feedback than we can
without feedback, and

Crp=0C. 0O (7.135)

As we have seen in the example of the binary erasure channel, feedback
can help enormously in simplifying encoding and decoding. However, it
cannot increase the capacity of the channel.

7.13 SOURCE-CHANNEL SEPARATION THEOREM

It is now time to combine the two main results that we have proved so far:
data compression (R > H: Theorem 5.4.2) and data transmission (R <
C: Theorem 7.7.1). Is the condition H < C necessary and sufficient for
sending a source over a channel? For example, consider sending digitized
speech or music over a discrete memoryless channel. We could design
a code to map the sequence of speech samples directly into the input
of the channel, or we could compress the speech into its most efficient
representation, then use the appropriate channel code to send it over the
channel. It is not immediately clear that we are not losing something
by using the two-stage method, since data compression does not depend
on the channel and the channel coding does not depend on the source
distribution.

We will prove in this section that the two-stage method is as good as
any other method of transmitting information over a noisy channel. This
result has some important practical implications. It implies that we can
consider the design of a communication system as a combination of two
parts, source coding and channel coding. We can design source codes
for the most efficient representation of the data. We can, separately and
independently, design channel codes appropriate for the channel. The com-
bination will be as efficient as anything we could design by considering
both problems together.

The common representation for all kinds of data uses a binary alphabet.
Most modern communication systems are digital, and data are reduced
to a binary representation for transmission over the common channel.
This offers an enormous reduction in complexity. Networks like, ATM
networks and the Internet use the common binary representation to allow
speech, video, and digital data to use the same communication channel.
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The result—that a two-stage process is as good as any one-stage pro-
cess—seems so obvious that it may be appropriate to point out that it
is not always true. There are examples of multiuser channels where the
decomposition breaks down. We also consider two simple situations where
the theorem appears to be misleading. A simple example is that of sending
English text over an erasure channel. We can look for the most efficient
binary representation of the text and send it over the channel. But the
errors will be very difficult to decode. If, however, we send the English
text directly over the channel, we can lose up to about half the letters and
yet be able to make sense out of the message. Similarly, the human ear has
some unusual properties that enable it to distinguish speech under very
high noise levels if the noise is white. In such cases, it may be appropriate
to send the uncompressed speech over the noisy channel rather than the
compressed version. Apparently, the redundancy in the source is suited to
the channel.

Let us define the setup under consideration. We have a source V that
generates symbols from an alphabet V. We will not make any assumptions
about the kind of stochastic process produced by V other than that it is
from a finite alphabet and satisfies the AEP. Examples of such processes
include a sequence of i.i.d. random variables and the sequence of states
of a stationary irreducible Markov chain. Any stationary ergodic source
satisfies the AEP, as we show in Section 16.8.

We want to send the sequence of symbols V' =V, V,,...,V, over
the channel so that the receiver can reconstruct the sequence. To do this,
we map the sequence onto a codeword X" (V") and send the codeword
over the channel. The receiver looks at his received sequence Y" and
makes an estimate V" of the sequence V" that was sent. The receiver
makes an error if V" # V. We define the probability of error as

Pr(V" s Vi) =" p")pO" X" WNI (") #v"),  (7.136)
yroon

where [ is the indicator function and g(y") is the decoding function. The
system is illustrated in Figure 7.14.
We can now state the joint source—channel coding theorem:

n xXnvr & n
V_> Encoder v ng/ T)r:)el Decoder —V>

FIGURE 7.14. Joint source and channel coding.
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Theorem 7.13.1 (Source—channel coding theorem) If Vi, V5, ... V"
is a finite alphabet stochastic process that satisfies the AEP and H (V) <
C, there exists a source—channel code with probability of error Pr(V" #
V") — 0. Conversely, for any stationary stochastic process, if H()) > C,
the probability of error is bounded away from zero, and it is not possible
to send the process over the channel with arbitrarily low probability of
error.

Proof: Achievabilitry. The essence of the forward part of the proof is
the two-stage encoding described earlier. Since we have assumed that the
stochastic process satisfies the AEP, it implies that there exists a typical
set Ag") of size < 2"+ which contains most of the probability. We
will encode only the source sequences belonging to the typical set; all
other sequences will result in an error. This will contribute at most € to
the probability of error.

We index all the sequences belonging to Aé”). Since there are at most
2n(H+€) guch sequences, n(H + €) bits suffice to index them. We can
transmit the desired index to the receiver with probability of error less
than € if

HV) +e=R <C. (7.137)

The receiver can reconstruct V" by enumerating the typical set A
and choosing the sequence corresponding to the estimated index. This
sequence will agree with the transmitted sequence with high probability.

To be precise,
P(V" £V < P(V" ¢ A™) + P(g(Y") # V"|V" € A™) (7.138)
<e+e=2 (7.139)

for n sufficiently large. Hence, we can reconstruct the sequence with low
probability of error for n sufficiently large if

H®YV) <C. (7.140)

Converse: We wish to show that Pr(V" # V") — 0 implies that H())
< C for any sequence of source-channel codes

XV Vs AT, (7.141)
g, (Y7 1 Y s Yn. (7.142)
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Thus X"(-) is an arbitrary (perhaps random) assignment of codewords
to data sequences V”, and g, (-) is any decoding function (assignment of
estimates V" to output sequences Y". By Fano’s inequality, we must have

HV"|V") <14+Pr(V" # VM log|V'| = 14 Pr(V" # V"nlog |V

(7.143)
Hence for the code,
@ HWV, Vo, ..., V,
Ho @ HEL ) (7.144)
n
H Vll
= " (7.145)
n
1 . 1 .
= —-HWV"\V"Y+-=I(V"; V" (7.146)
n n

b 1 . 1 .
< —(14+Pr(V" # V'nlog V) + —1(V"; V") (7.147)
n n

© 1 (rn n 1 n n
< —(1+Pr(V* % Vhnlog V) + —1(X" Y")  (7.148)
n n

@ 1 N
< —+Pr(V"#£ Vhlog |V + C, (7.149)
n

where (a) follows from the definition of entropy rate of a stationary
process, (b) follows from Fano’s inequality, (c) follows from the data-
processing inequality (since V" — X" — Y" — V" forms a Markov
chain) and (d) follows from the memorylessness of the channel. Now
letting n — oo, we have Pr(V" # V") — 0 and hence

HW) <C. (7.150)
O
Hence, we can transmit a stationary ergodic source over a channel if and
only if its entropy rate is less than the capacity of the channel. The joint
source—channel separation theorem enables us to consider the problem of
source coding separately from the problem of channel coding. The source
coder tries to find the most efficient representation of the source, and
the channel coder encodes the message to combat the noise and errors
introduced by the channel. The separation theorem says that the separate
encoders (Figure 7.15) can achieve the same rates as the joint encoder
(Figure 7.14).
With this result, we have tied together the two basic theorems of
information theory: data compression and data transmission. We will try
to summarize the proofs of the two results in a few words. The data
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=

V" | Source Channel | X"(V™)_[Channel| Y". | Channel Source |__ V7
Encoder Encoder p(y]x) Decoder Decoder

FIGURE 7.15. Separate source and channel coding.

compression theorem is a consequence of the AEP, which shows that
there exists a “small” subset (of size 2"'/7) of all possible source sequences
that contain most of the probability and that we can therefore represent
the source with a small probability of error using H bits per symbol.
The data transmission theorem is based on the joint AEP; it uses the
fact that for long block lengths, the output sequence of the channel is
very likely to be jointly typical with the input codeword, while any other
codeword is jointly typical with probability ~ 27"/, Hence, we can use
about 2"’ codewords and still have negligible probability of error. The
source—channel separation theorem shows that we can design the source
code and the channel code separately and combine the results to achieve
optimal performance.

SUMMARY

Channel capacity. The logarithm of the number of distinguishable
inputs is given by
C = m(a))gl(X; Y).
px

Examples

o Binary symmetric channel: C =1 — H(p).
o Binary erasure channel: C =1 — «.
o Symmetric channel: C = log|)Y| — H (row of transition matrix).

Properties of C

1. 0 < C < minflog |X], log ||}
2. I(X;Y) is a continuous concave function of p(x).

Joint typicality. The set Aé”) of jointly typical sequences {(x", y")}
with respect to the distribution p(x, y) is given by

AP ={(x",y") e X" x Y- (7.151)

1
—log p(x™) — H(X)| < e, (7.152)
n
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1
‘——IOg pO") —HY)| <k, (7.153)
n

1
‘__log p(xnv )’n) - H(X7 Y)
n

< e} . (7.154)

where p(x", y") = [T, p(xi, i)

Joint AEP. Let (X", Y") be sequences of length n drawn i.i.d. accord-
ing to p(x", y") = 1—[?:1 p(x;, yi). Then:

1. Pr((X",Y") € A™) - 1 as n — oo.
2 |A(n)| < 211(H(X,Y)+e)
. p < .

3. 1 (X7, ") ~ p(x™) p(y"), then Pr ((5(", 7 e AQ”)
< 2—n(l(X;Y)—3€).

Channel coding theorem. All rates below capacity C are achievable,
and all rates above capacity are not; that is, for all rates R < C, there
exists a sequence of (2R, n) codes with probability of error A" — 0.
Conversely, for rates R > C, A is bounded away from 0.

Feedback capacity. Feedback does not increase capacity for discrete
memoryless channels (i.e., Cpp = C).

Source—channel theorem. A stochastic process with entropy rate H
cannot be sent reliably over a discrete memoryless channel if H >
C. Conversely, if the process satisfies the AEP, the source can be
transmitted reliably if H < C.

PROBLEMS

7.1 Preprocessing the output. One is given a communication chan-
nel with transition probabilities p(y|x) and channel capacity C =
max,) 1 (X; Y). A helpful statistician preprocesses the output by
forming Y = g(Y). He claims that this will strictly improve the
capacity.

(a) Show that he is wrong.

(b) Under what conditions does he not strictly decrease the
capacity?
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7.2

7.3

7.4

7.5

7.6

CHANNEL CAPACITY

Additive noise channel. Find the channel capacity of the following
discrete memoryless channel:

V4

x *) v

where Pr{Z =0} =Pr{Z = a} = % The alphabet for x is X =
{0, 1}. Assume that Z is independent of X. Observe that the channel
capacity depends on the value of a.

Channels with memory have higher capacity. Consider a binary
symmetric channel with ¥; = X; @ Z;, where @ is mod 2 addi-
tion, and X;, ¥; € {0, 1}. Suppose that {Z;} has constant marginal
probabilities Pr{Z; = 1} = p = 1 — Pr{Z; = 0}, but that Z;, Z,,
..., Zy are not necessarily independent. Assume that Z”" is inde-
pendent of the input X". Let C =1— H(p,1 — p). Show that
max p(xy,xa,....xn) 1(X1, Xo, ..., X3 Y1. Y0, ...,

Y,) > nC.

Channel capacity. Consider the discrete memoryless channel ¥ =
X 4+ Z (mod 11), where

1. 2. 3
Z=<1 1 1)
3° 3° 3

and X € {0, 1,..., 10}. Assume that Z is independent of X.
(a) Find the capacity.
(b) What is the maximizing p*(x)?

Using two channels at once. Consider two discrete memoryless
channels (X7, p(y1 | x1), V1) and (X2, p(y2 | x2), J») with capac-
ities C7 and C,, respectively. A new channel (X} x X3, p(y |
x1) X p(y2 | x2), V1 x )») is formed in which x; € &} and x; € A,
are sent simultaneously, resulting in yq, y,. Find the capacity of this
channel.

Noisy typewriter. Consider a 26-key typewriter.

(a) If pushing a key results in printing the associated letter, what
is the capacity C in bits?
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(b) Now suppose that pushing a key results in printing that letter or
the next (with equal probability). Thus, A - Aor B,..., Z —
Z or A. What is the capacity?

(c) What is the highest rate code with block length one that you

can find that achieves zero probability of error for the channel
in part (b)?

Cascade of binary symmetric channels. Show that a cascade of n
identical independent binary symmetric channels,

X0—>—>X1—>---—>Xn_1—>—>Xn,

each with raw error probability p, is equivalent to a single BSC with

error probability %(1 -1 - 2p)”) and hence that lim 7(Xgp; X;,)
n— o0

= 0if p # 0, 1. No encoding or decoding takes place at the inter-

mediate terminals X1, ..., X,—;. Thus, the capacity of the cascade

tends to zero.

Z-channel. The Z-channel has binary input and output alphabets
and transition probabilities p(y|x) given by the following matrix:

Qz[l}z 1(/)2} x,y €{0,1}

Find the capacity of the Z-channel and the maximizing input prob-
ability distribution.

Suboptimal codes. For the Z-channel of Problem 7.8, assume that
we choose a (2"%, n) code at random, where each codeword is a
sequence of fair coin tosses. This will not achieve capacity. Find the
maximum rate R such that the probability of error Pe(”) , averaged
over the randomly generated codes, tends to zero as the block length
n tends to infinity.

Zero-error capacity. A channel with alphabet {0, 1, 2, 3, 4} has tran-
sition probabilities of the form

(V[x) = 1/2 if y=x=%1mod>5
pyIY) = 0 otherwise.

(a) Compute the capacity of this channel in bits.
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(b) The zero-error capacity of a channel is the number of bits per
channel use that can be transmitted with zero probability of
error. Clearly, the zero-error capacity of this pentagonal chan-
nel is at least | bit (transmit O or 1 with probability 1/2). Find
a block code that shows that the zero-error capacity is greater
than 1 bit. Can you estimate the exact value of the zero-error
capacity? (Hint: Consider codes of length 2 for this channel.)
The zero-error capacity of this channel was finally found by
Lovasz [365].

Time-varying channels. Consider a time-varying discrete memory-
less channel.

Let Yi,Ys,...,Y, be conditionally independent given X, X»,
..., X,,, with conditional distribution given by p(y | Xx) = ]_[!'.’:1
pi(yi | xi). Let X = (X1, X, ..., X,), Y = (¥, Y2, ..., Y,). Find

max ) 1 (X:Y).

1-p;

Pi
Pj

1-p;

Unused symbols. Show that the capacity of the channel with prob-
ability transition matrix

2 1
530
Ppe=| 1 1 31 (7.155)
12
03 3

is achieved by a distribution that places zero probability on one
of input symbols. What is the capacity of this channel? Give an
intuitive reason why that letter is not used.

Erasures and errors in a binary channel. Consider a channel with
binary inputs that has both erasures and errors. Let the probability
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of error be € and the probability of erasure be «, so the channel is
follows:

1-a—c¢

1-a—-c¢

(a) Find the capacity of this channel.
(b) Specialize to the case of the binary symmetric channel (¢ = 0).
(c) Specialize to the case of the binary erasure channel (¢ = 0).

Channels with dependence between the letters. Consider the fol-
lowing channel over a binary alphabet that takes in 2-bit symbols
and produces a 2-bit output, as determined by the following map-
ping: 00 — 01, 01 — 10, 10 — 11, and 11 — 00. Thus, if the
2-bit sequence 01 is the input to the channel, the output is 10 with
probability 1. Let X, X» denote the two input symbols and Y7, ¥>
denote the corresponding output symbols.
(a) Calculate the mutual information / (X, X»; Y1, Y») as a func-
tion of the input distribution on the four possible pairs of inputs.

(b) Show that the capacity of a pair of transmissions on this chan-
nel is 2 bits.

(¢) Show that under the maximizing input distribution, /(Xy; Y1)
= 0. Thus, the distribution on the input sequences that achieves
capacity does not necessarily maximize the mutual information
between individual symbols and their corresponding outputs.

Jointly typical sequences. As we did in Problem 3.13 for the typical
set for a single random variable, we will calculate the jointly typical
set for a pair of random variables connected by a binary symmetric
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channel, and the probability of error for jointly typical decoding
for such a channel.

0.9

0.1
0.1

0.9

We consider a binary symmetric channel with crossover probability

0.1.

The input distribution that achieves capacity is the uniform

distribution [i.e., p(x) = (3, 3)]. which yields the joint distribution
p(x, y) for this channel is given by

X Y 0 1

0 0.45 0.05
1 0.05 0.45

The marginal distribution of Y is also (%, %).

(a)

Calculate H(X), H(Y), H(X,Y), and I(X;Y) for the joint
distribution above.

(b) Let X1, X5,..., X, be drawn i.i.d. according the Bernoulli(%)

(c)

distribution. Of the 2" possible input sequences of length n,
which of them are typical [i.e., member of Ag’l)(X ) for € =
0.2]? Which are the typical sequences in A" (Y)?

The jointly typical set Ag")(X, Y) is defined as the set of
sequences that satisfy equations (7.35-7.37). The first two
equations correspond to the conditions that x" and y" are in
AW (X) and AM(Y), respectively. Consider the last condi-
tion, which can be rewritten to state that —%log p(x", y") e
(H(X,Y)—€,H(X,Y) +¢€). Let k be the number of places
in which the sequence x” differs from y” (k is a function of
the two sequences). Then we can write

pG", Y =[] pxi, y) (7.156)

i=1
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= (0.45)"7%(0.05)F (7.157)

— (% (1= p)"*p*. (7.158)

An alternative way at looking at this probability is to look at the
binary symmetric channel as in additive channel ¥ = X & Z,
where Z is a binary random variable that is equal to 1 with
probability p, and is independent of X. In this case,

p(x", y") =pE"p(y"|x") (7.159)
= p(x")p("|x") (7.160)
=p(x")p(") (7.161)

— <%> (1= p)"*p*. (7.162)

Show that the condition that (x", y") being jointly typical is
equivalent to the condition that x” is typical and z" = y" — x"
is typical.

(d) We now calculate the size of A" (Z) for n = 25 and € = 0.2.
As in Problem 3.13, here is a table of the probabilities and
numbers of sequences with k ones:

k ) ()p*a—pr=*  —llogp@xm
0 1 0.071790 0.152003
1 25 0.199416 0.278800
2 300 0.265888 0.405597
3 2300 0.226497 0.532394
4 12650 0.138415 0.659191
5 53130 0.064594 0.785988
6 177100 0.023924 0.912785
7 480700 0.007215 1.039582
8 1081575 0.001804 1.166379
9 2042975 0.000379 1.293176
10 3268760 0.000067 1.419973
11 4457400 0.000010 1.546770
12 5200300 0.000001 1.673567

[Sequences with more than 12 ones are omitted since their total
probability is negligible (and they are not in the typical set).]
What is the size of the set A/ (Z)?
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(e)

®

(g

(h)

Now consider random coding for the channel, as in the proof
of the channel coding theorem. Assume that 2"% codewords
X™(1), X*(2)...., X"(2"®) are chosen uniformly over the 2"
possible binary sequences of length n. One of these codewords
is chosen and sent over the channel. The receiver looks at
the received sequence and tries to find a codeword in the
code that is jointly typical with the received sequence. As
argued above, this corresponds to finding a codeword X" (i)
such that Y — X" (i) € Aé”)(Z). For a fixed codeword x"(i),
what is the probability that the received sequence Y is such
that (x" (i), Y") is jointly typical?

Now consider a particular received sequence V' =
000000...0, say. Assume that we choose a sequence
X" at random, uniformly distributed among all the 2" possible
binary n-sequences. What is the probability that the chosen
sequence is jointly typical with this y"? [Hint: This is the
probability of all sequences x” such that y* — x" € Ag”(Z).]
Now consider a code with 2° = 512 codewords of length 12
chosen at random, uniformly distributed among all the 2"
sequences of length n =25. One of these codewords, say
the one corresponding to i = 1, is chosen and sent over the
channel. As calculated in part (e), the received sequence, with
high probability, is jointly typical with the codeword that was
sent. What is the probability that one or more of the other
codewords (which were chosen at random, independent of the
sent codeword) is jointly typical with the received sequence?
[Hint: You could use the union bound, but you could also
calculate this probability exactly, using the result of part (f)
and the independence of the codewords.]

Given that a particular codeword was sent, the probability of
error (averaged over the probability distribution of the chan-
nel and over the random choice of other codewords) can be
written as

Pr(Error|x™ (1) sent) = Z).n:).ncauses error PO 1x™(1)). (7.163)

There are two kinds of error: the first occurs if the received
sequence y" is not jointly typical with the transmitted code-
word, and the second occurs if there is another codeword
jointly typical with the received sequence. Using the result
of the preceding parts, calculate this probability of error. By
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the symmetry of the random coding argument, this does not
depend on which codeword was sent.

The calculations above show that average probability of error for
a random code with 512 codewords of length 25 over the binary
symmetric channel of crossover probability 0.1 is about 0.34. This
seems quite high, but the reason for this is that the value of € that
we have chosen is too large. By choosing a smaller € and a larger
n in the definitions of Ag”), we can get the probability of error to
be as small as we want as long as the rate of the code is less than
I1(X;Y)— 3e.

Also note that the decoding procedure described in the problem
is not optimal. The optimal decoding procedure is maximum like-
lihood (i.e., to choose the codeword that is closest to the received
sequence). It is possible to calculate the average probability of
error for a random code for which the decoding is based on an
approximation to maximum likelihood decoding, where we decode
a received sequence to the unique codeword that differs from the
received sequence in < 4 bits, and declare an error otherwise. The
only difference with the jointly typical decoding described above
is that in the case when the codeword is equal to the received
sequence! The average probability of error for this decoding scheme
can be shown to be about 0.285.

Encoder and decoder as part of the channel. Consider a binary
symmetric channel with crossover probability 0.1. A possible cod-
ing scheme for this channel with two codewords of length 3 is to
encode message a; as 000 and a, as 111. With this coding scheme,
we can consider the combination of encoder, channel, and decoder
as forming a new BSC, with two inputs a; and a, and two outputs
ay and as.

(a) Calculate the crossover probability of this channel.

(b) What is the capacity of this channel in bits per transmission of
the original channel?

(¢) What is the capacity of the original BSC with crossover prob-
ability 0.1?

(d) Prove a general result that for any channel, considering the
encoder, channel, and decoder together as a new channel from
messages to estimated messages will not increase the capacity
in bits per transmission of the original channel.

Codes of length 3 for a BSC and BEC. In Problem 7.16, the prob-
ability of error was calculated for a code with two codewords of
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length 3 (000 and 111) sent over a binary symmetric channel with
crossover probability €. For this problem, take ¢ = 0.1.

(a)

(b)
(c)

(d)

Find the best code of length 3 with four codewords for this
channel. What is the probability of error for this code? (Note
that all possible received sequences should be mapped onto
possible codewords.)

What is the probability of error if we used all eight possible
sequences of length 3 as codewords?

Now consider a binary erasure channel with erasure probability
0.1. Again, if we used the two-codeword code 000 and 111,
received sequences OOE, OEO, E0O, OEE, EOE, EEO would all
be decoded as 0, and similarly, we would decode 11E, 1E1,
El11, 1EE, E1E, EE1 as 1. If we received the sequence EEE,
we would not know if it was a 000 or a 111 that was sent—so
we choose one of these two at random, and are wrong half the
time. What is the probability of error for this code over the
erasure channel?

What is the probability of error for the codes of parts (a) and
(b) when used over the binary erasure channel?

Channel capacity. Calculate the capacity of the following channels
with probability transition matrices:

(a)

(b)

X=Y=1{0,1,2}
111
3 3 3
pOlx)=| 4 1 4 (7.164)
111
3 3 3
X=Y=1{0,1,2}
1 1
3 2 0
pOly =0 1 1 (7.165)
L g 1L
2 2
(c) X¥X=Yy=1{0,1,2,3}
p 1—-p 0 0
_ -DP P 0 0
p(ylx) = 0 0 g 1 (7.166)
0 0 1—gq q
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Capacity of the carrier pigeon channel. Consider a commander of
an army besieged in a fort for whom the only means of commu-
nication to his allies is a set of carrier pigeons. Assume that each
carrier pigeon can carry one letter (8 bits), that pigeons are released
once every 5 minutes, and that each pigeon takes exactly 3 minutes
to reach its destination.

(a) Assuming that all the pigeons reach safely, what is the capacity
of this link in bits/hour?

(b) Now assume that the enemies try to shoot down the pigeons
and that they manage to hit a fraction o of them. Since the
pigeons are sent at a constant rate, the receiver knows when
the pigeons are missing. What is the capacity of this link?

(¢) Now assume that the enemy is more cunning and that every
time they shoot down a pigeon, they send out a dummy pigeon
carrying a random letter (chosen uniformly from all 8-bit let-
ters). What is the capacity of this link in bits/hour?

Set up an appropriate model for the channel in each of the above

cases, and indicate how to go about finding the capacity.

Channel with two independent looks at Y. Let Y1 and Y, be condi-
tionally independent and conditionally identically distributed given
X

(a) Show that I (X; Y, Yy) =21(X;Y)) — 1Y}, Y>).
(b) Conclude that the capacity of the channel

X—> — (%}, Y2)

is less than twice the capacity of the channel

X —> — Y,

Tall, fat people. Suppose that the average height of people in a
room is 5 feet. Suppose that the average weight is 100 Ib.

(a) Argue that no more than one-third of the population is 15 feet
tall.

(b) Find an upper bound on the fraction of 300-1b 10-footers in
the room.
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Can signal alternatives lower capacity? Show that adding a row to
a channel transition matrix does not decrease capacity.

Binary multiplier channel

(a) Consider the channel Y = X Z, where X and Z are independent
binary random variables that take on values 0 and 1. Z is
Bernoulli(e) [i.e., P(Z = 1) = «]. Find the capacity of this
channel and the maximizing distribution on X.

(b) Now suppose that the receiver can observe Z as well as Y.
What is the capacity?

Noise alphabets. Consider the channel

z

x ) v

X={0,1, 2,3}, where ¥ = X 4+ Z, and Z is uniformly distributed

over three distinct integer values Z = {z1, 22, z3}.

(a) What is the maximum capacity over all choices of the Z alpha-
bet? Give distinct integer values z1, z2, z3 and a distribution on
X achieving this.

(b) What is the minimum capacity over all choices for the Z alpha-
bet? Give distinct integer values z1, 22, z3 and a distribution on
X achieving this.

Bottleneck channel. Suppose that a signal X €e XY= {1,2, ..., m}
goes through an intervening transition X — V — Y

p(v[x) v pylv)

[TTTTI
~<

>
L1111

where x = {1,2,...,m},y={1,2,...,m},and v = {1, 2, ..., k}.
Here p(v|x) and p(y|v) are arbitrary and the channel has transition
probability p(y|x) = >, p(vlx)p(y|v). Show that C < logk.
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7.26 Noisy typewriter. Consider the channel with x, y € {0, 1, 2, 3} and
transition probabilities p(v|x) given by the following matrix:

1300
04 %10
00 1 1
300 3

(a) Find the capacity of this channel.
(b) Define the random variable z = g(y), where

A ifyefo,1}
g(y)—{ B ifye{23}.

For the following two PMFs for x, compute /(X; Z):

() .
poo={ g s
(i1)
por={ 4 el

(¢) Find the capacity of the channel between x and z, specifically
where x € {0, 1, 2, 3}, z € {A, B}, and the transition probabil-
ities P(z|x) are given by

p(Z=z]X =x) = Z P(Y = yw|X =x).
gyo)=z

(d) For the X distribution of part (i) of (b), does X - Z — Y
form a Markov chain?

7.27 Erasure channel. Let {X, p(y|x), )V} be a discrete memoryless chan-
nel with capacity C. Suppose that this channel is cascaded imme-
diately with an erasure channel {), p(s|y), S} that erases « of its
symbols.

pylx) —Y S

>
L1111
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Specifically, S = {yi, ¥2, .... yum. e}, and

Pr{S = y|X = x} = @p(ylx), ye,
Pr{S =e|lX =x} =0

Determine the capacity of this channel.

Choice of channels. Find the capacity C of the union of two chan-

nels (X1, pi(yilx1), Y1) and (A2, p2(y2lx2), I2), where at each

time, one can send a symbol over channel 1 or channel 2 but

not both. Assume that the output alphabets are distinct and do not

intersect.

(a) Show that 2¢ = 2€1 422 Thus, 2¢ is the effective alphabet
size of a channel with capacity C.

(b) Compare with Problem 2.10 where 27 = 21 4- 22 and inter-
pret part (a) in terms of the effective number of noise-free

symbols.
(c) Use the above result to calculate the capacity of the following
channel.
1-p
0 0
p
p
1 1
1-p
2 2

7.29 Binary multiplier channel

(a) Consider the discrete memoryless channel ¥ = XZ, where X
and Z are independent binary random variables that take on
values 0 and 1. Let P(Z = 1) = «. Find the capacity of this
channel and the maximizing distribution on X.

(b) Now suppose that the receiver can observe Z as well as Y.
What is the capacity?
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Noise alphabets. Consider the channel

z

x () v

X=1{0,1,2,3}, where Y = X + Z, and Z is uniformly distributed
over three distinct integer values Z = {zy, 22, z3}-

(a) What is the maximum capacity over all choices of the Z alpha-
bet? Give distinct integer values z1, 22, z3 and a distribution on
X achieving this.

(b) What is the minimum capacity over all choices for the Z alpha-
bet? Give distinct integer values zj, z», zz and a distribution on
X achieving this.

Source and channel. We wish to encode a Bernoulli(«) process
Vi, Va, ... for transmission over a binary symmetric channel with
crossover probability p.

vn X1 (V) z yn > Un

1-p

Find conditions on « and p so that the probability of error P (V" #
V") can be made to go to zero as n —> 00.

Random 20 questions. Let X be uniformly distributed over {1. 2,
...,m}. Assume that m = 2", We ask random questions: Is X € §1?
Is X € S,7 ... until only one integer remains. All 2™ subsets S of
{1,2,...,m} are equally likely.

(a) How many deterministic questions are needed to determine X?

(b) Without loss of generality, suppose that X = 1 is the random
object. What is the probability that object 2 yields the same
answers as object 1 for k questions?

(¢) What is the expected number of objects in {2, 3, ..., m} that

have the same answers to the questions as those of the correct
object 1?
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(d) Suppose that we ask n + /n random questions. What is the
expected number of wrong objects agreeing with the answers?

(e) Use Markov’s inequality Pr{X > ru} < %, to show that the
probability of error (one or more wrong object remaining) goes
to zero as n —> oQ.

BSC with feedback. Suppose that feedback is used on a binary
symmetric channel with parameter p. Each time a Y is received,
it becomes the next transmission. Thus, X7 is Bern(%), X, =17,
Xs=Y,... X, =Y,

(a) Find lim, ,o0 11(X"; Y™).

(b) Show that for some values of p, this can be higher than capac-
1ty.

(c) Using this feedback transmission scheme, X"(W, Y") = (X,
(W), Y, Ya, ..., Y,—1), what is the asymptotic communication
rate achieved; that is, what is lim,_, o %I (W; Y™?

Capacity. Find the capacity of

(a) Two parallel BSCs:

K

N
N

(b) BSC and a single symbol:
| |
5 A\ 5
X Y

3 ——m>3

1

2
X

3
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(¢) BSC and a ternary channel:

(d) Ternary channel:

O W

p(ylx) = [

W)= W—
W O

}. (7.167)

Capacity. Suppose that channel P has capacity C, where P is an
m X n channel matrix.

(a) What is the capacity of

= P 0
= 9
P=[5 0]
(b) What about the capacity of

A P 0
= 9
=100
where [ if the k x k identity matrix.

Channel with memory. Consider the discrete memoryless channel
Y; = Z; X; with input alphabet X; € {—1, 1}.
(a) What is the capacity of this channel when {Z;} is i.i.d. with

1, p=0.5

zl-:{ o (7.168)
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Now consider the channel with memory. Before transmission
begins, Z is randomly chosen and fixed for all time. Thus,
Yi =Z7ZX;.

(b) What is the capacity if

_ 1, p=0.5
Z = { _1 b= 0.5 (7.169)

7.37 Joint typicality. Let (X;, Y;, Z;) be i.i.d. according to p(x, y, z). We
will say that (x", y", z") is jointly typical [written (x", y",7") €
AM] if
e p(x") e 2—n(H(X)%e)
. p().n) c 2—IZ(H(Y):|:E).
° p(zn) e 2—71(H(Z):|:e)‘
R p(xn’ yn) c 2—n(H(X,Y):|:e).
° p(xn’ Zn) e 2—71(H(X,Z)ie).
° p().n’ Zn) e 2—71(H(Y,Z):I:e)‘
° p(xn’ yn’ Zn) = 2—11(H(X,Y,Z)ie).

Now suppose that (X", Y, Z") is drawn according to p(x™) p(y")
p(Z"). Thus, X n f’”, 7" have the same marginals as p(x", y", z*)
but are independent. Find (bounds on) Pr{(X",Y",Z") € Ag”} in
terms of the entropies H(X),H(Y),H(Z),H(X,Y),H(X, Z),
H(Y,Z),and H(X,Y, Z).

HISTORICAL NOTES

The idea of mutual information and its relationship to channel capacity
was developed by Shannon in his original paper [472]. In this paper, he
stated the channel capacity theorem and outlined the proof using typical
sequences in an argument similar to the one described here. The first
rigorous proof was due to Feinstein [205], who used a painstaking “cookie-
cutting” argument to find the number of codewords that can be sent with a
low probability of error. A simpler proof using a random coding exponent
was developed by Gallager [224]. Our proof is based on Cover [121] and
on Forney’s unpublished course notes [216].

The converse was proved by Fano [201], who used the inequality bear-
ing his name. The strong converse was first proved by Wolfowitz [565],
using techniques that are closely related to typical sequences. An iterative
algorithm to calculate the channel capacity was developed independently
by Arimoto [25] and Blahut [65].
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The idea of the zero-error capacity was developed by Shannon [474];
in the same paper, he also proved that feedback does not increase the
capacity of a discrete memoryless channel. The problem of finding the
zero-error capacity is essentially combinatorial; the first important result
in this area is due to Lovasz [365]. The general problem of finding the
zero error capacity is still open; see a survey of related results in Korner
and Orlitsky [327].

Quantum information theory, the quantum mechanical counterpart to
the classical theory in this chapter, is emerging as a large research area in
its own right and is well surveyed in an article by Bennett and Shor [49]
and in the text by Nielsen and Chuang [395].



